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Lateral variations in the thermal boundary conditions at the horizontal boundary of
an otherwise stably stratified fluid layer drive circulatory motion. For a rapidly
rotating electrically conducting fluid, the introduction of a background vertical
magnetic field reduces the dimensionless strength of the thermal wind from O(1)
to O(E1/4) for prescribed temperature variation or to O(E1/2) for prescribed heat-flux
variation, where E is the Ekman number. This is a significant effect when considering
the spatially variable cooling of the Earth’s core by the mantle. A general discussion
of linear hydromagnetic flows identifies a large number of lengthscales inherent in
the differential system as functions of the Ekman, Elsasser and stratification numbers,
and shows that other scalings arise from the boundary conditions.

1. Introduction
Cooling of the Earth’s fluid outer core drives convective motions with velocities

of order 0.3 mms−1 that are responsible both for the observed historic variation in
the Earth’s magnetic field and for the long-term maintenance of this field against
ohmic decay by dynamo action. Most, if not all, of the outer core is thought to
be vigorously mixed by compositional convection arising from solidification of the
pure iron inner core from a multicomponent outer-core melt. However, there have
been a number of suggestions that there might be a stably stratified layer at the
top of the outer core under the boundary with the silicate mantle (e.g. Artyushkov
1972; Whaler 1980; Fearn & Loper 1981; Braginsky 1984, 1993; Lloyd & Gubbins
1990; Lay & Young 1990), particularly if the rate of cooling by the overlying
mantle is subadiabatic (Gubbins, Thomson & Whaler 1982; Labrosse, Poirier & Le
Mouël 1997; Lister & Buffett 1998). Since the mantle convects much more sluggishly
than the core (by a factor of order 109), it imposes a thermal heat-flux boundary
condition on the core that is steady on the timescale of core motions but spatially
varying around the core–mantle boundary. Various attempts have been made to link
variations in mantle temperatures inferred from seismic tomography with core flows
inferred from variation of the magnetic field (e.g. Bloxham & Gubbins 1987; Kohler
& Stevenson 1990; Bloxham & Jackson 1990), but the thermal-wind equations used
were geostrophic and did not incorporate the effects of magnetic field. The main
purpose of this paper is to develop the theory of boundary-forced thermal winds
in rotating stratified hydromagnetic flow and to show that the magnetic field has a
major effect of the structure and magnitude of such flow.
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There is an extensive literature on linearized solutions for boundary-driven flows
in rotating fluids, often in cylindrical or annular geometries or making use of
the von Kármán similarity form for flow between rotating disks. For example,
steady mechanical forcing by small differential rotation of the upper and lower
boundaries has been studied for stratified, non-magnetic flow (Barcilon & Pedlosky
1967a, b), homogeneous, hydromagnetic flow (Vempaty & Loper 1975) and stratified,
hydromagnetic flow (Loper 1975, 1976a), while the unsteady spin-up problem has
been studied for homogeneous, non-magnetic flow (Greenspan & Howard 1963),
homogeneous hydromagnetic flow (Benton & Loper 1969; Loper & Benton 1970), and
stratified hydromagnetic flow (Loper 1976b, c). Interest has focused on the mechanisms
by which the boundaries control the interior flow and on the suppression of columnar
motion by stratification leading to laminated flow. Thermal forcing has sometimes
been considered through the action of centrifugal buoyancy on the mismatch between
paraboloidal potential surfaces and horizontal boundaries (e.g. Barcilon & Pedlosky
1967a, c; Loper 1975), which has obvious applications to laboratory experiments in
rotating tanks but is not relevant to the core where the leading-order ellipsoidal
boundary with the mantle is an isopotential surface. To our knowledge, stratified
hydromagnetic flow driven solely by applied lateral variation in the thermal boundary
conditions has not been considered previously.

Mathematically, this problem is linked to the Rayleigh–Bénard problem
(Chandrasekhar 1981) and the same differential system is to be solved, the difference
being that here the boundary conditions are inhomogeneous and the (stable)
stratification prescribed, whereas the classical linear Rayleigh–Bénard problem has
homogeneous boundary conditions and the (unstable) stratification appears as an
eigenvalue. More recently, large-scale numerical simulations have been able to examine
the effects of inhomogeneous boundary conditions on the Rayleigh–Bernard problem
in a spherical annulus in both rotating magnetoconvection and numerical dynamos
(e.g. Olson & Glatzmeier 1996; Sarson, Jones & Longbottom 1997; Gibbons &
Gubbins 2000; Bloxham 2000; Olson & Christensen 2002). Physically, of course, stable
stratification has a major effect on the structure of the flow and the present analytic
solutions are thus complementary to the numerical investigations for convecting
systems. We note that the interactions of stable stratification, rotation and magnetic
field allow a variety of free oscillations and wave modes (e.g. Hide 1966, 1969;
Braginsky 1967, 1984, 1993), but our interest here is in the flow forced by imposed
steady inhomogeneous thermal boundary conditions.

We begin with the problem definition in § 2. The non-magnetic problem is solved
in § 3 to contrast with the hydromagnetic solution in § 4. The solution for some other
boundary conditions is explored briefly in § 5. The thermally driven hydromagnetic
flow involves two vertical lengthscales much shorter than the horizontal wavelength
of the forcing and one which is much longer. In § 6 we sketch the great variety of
vertical and horizontal lengthscales that could arise in linear motions in a stratified
rotating hydromagnetic flow depending on the relative strengths of viscosity, rotation,
stratification and magnetic field. This analysis extends Loper’s (1976a) discussion of
boundary-layer scales to include scales of columnar and blocking structures. Finally,
we close with a discussion of the application of the analysis to the Earth’s core.

2. Problem description
Consider a semi-infinite layer of electrically conducting fluid in z < 0, rotating about

a vertical axis at angular velocity Ω = Ωez, permeated by a uniform background
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vertical magnetic field B0 = Bez, stably stratified by a background temperature
gradient dθ0/dz and overlain by a rigid, electrically insulating boundary. We are
interested in the flow u that is forced by steady lateral variations in the thermal
boundary condition imposed at z = 0.

The Boussinesq equations governing linearized magnetohydrodynamic motion
about this background state (Chandrasekhar 1981, p. 197) are

(∂t − ν∇2)u + 2Ω ∧ u = − ρ−1
0 ∇ P + gαθez +(ρ0µm)−1(B0 · ∇)b, (2.1)

(∂t − η∇2)b = (B0 · ∇)u, (2.2)

∇ · u = 0, ∇ · b = 0, (2.3)

(∂t − κ∇2)θ + (dθ0/dz)w = 0, (2.4)

where b and θ are the perturbations to the background field and temperature,
w = u · ez is the vertical velocity and P = p + ρ0gz + 1

2
(ρ0|Ω |2 + |B|2/µm) is the

modified pressure; ρ0 is the Boussinesq reference density, ν the kinematic viscosity, η

the magnetic diffusivity, µm the magnetic permeability, κ the thermal diffusivity and
α the thermal expansivity of the fluid. In making the Boussinesq approximation, we
are assuming either that the effects of compressibility are negligible or that they can
be absorbed by definition of a suitable potential temperature. We also assume that
gravity dominates centrifugal effects so that the buoyancy term in (2.1) acts vertically.

We introduce the vertical components of vorticity ζ = (∇ ∧ u)z and of induced
electric current j = µ−1

m (∇ ∧ b)z. Then successive curling of the momentum and
induction equations (2.1) and (2.2), together with use of (2.3), yields the system
of scalar equations (Chandrasekhar 1981, p. 199)

(∂t − ν∇2)∇2w +2Ω∂zζ = gα
(
∇2 − ∂2

z

)
θ +(B0/ρ0µm)∂z∇2bz, (2.5)

(∂t − ν∇2)ζ − 2Ω∂zw = (B0/ρ0)∂zj , (2.6)

(∂t − η∇2)bz = B0∂zw, (2.7)

µm(∂t − η∇2)j = B0∂zζ, (2.8)

to be solved with (2.4).
We restrict our attention to steady motion (∂t = 0), leaving the possible temporal

instability of finite-amplitude motions for future investigation. It is then possible to
eliminate bz between (2.5) and (2.7) without increasing the order of the system. We
non-dimensionalize with respect to a lengthscale L, timescale T , velocity scale L/T ,
temperature scale L/(gαT 2) and magnetic-field scale L2B0/(ηT ) to obtain

−E∇2∇2w + C∂zζ =
(
∇2 − ∂2

z

)
θ − Λ∂2

z w, (2.9)

−E∇2ζ − C∂zw = Λ∂zj, (2.10)

−∇2j = ∂zζ, (2.11)

−E∇2θ + Sw = 0, (2.12)

where

C = 2ΩT, E =
νT

L2
, Λ=

B2
0T

ρ0µmη
, S = gαT 2 dθ0

dz

ν

κ
(2.13)
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are dimensionless measures of the importance of rotation, viscosity, magnetic field
and stratification. It should be noted that L and T can be arbitrary scales, though
it is sensible to choose L to be characteristic of the lateral scale of the boundary
inhomogeneity and to choose T so that one of C, E, Λ or S is set equal to 1. Indeed,
for the rotation-dominated flows of § § 3–5, we choose T =(2Ω)−1 so that C = 1, and
E and Λ become the Ekman and Elsasser numbers. (In the Rayleigh-Bénard problem
one would choose T = L2/ν, with L the height of a finite layer, so that E =1 and −S

is the Rayleigh number.) In § 6 we will revert to T being unspecified in order to allow
consideration of non-rotating flow as the limit C → 0.

Finally, we note that, since the problem is linear and laterally unbounded, it is
sufficient to solve for a single horizontal wavenumber k and obtain the general solution
by Fourier superposition. Thus we set {w, ζ, j, θ} = {W (z), Z(z), J (z), Θ(z)} exp(ikx)
to obtain the tenth-order ordinary differential system

E(D2 − k2)2W = DZ + ΛD2W + k2Θ, (2.14)

E(D2 − k2)Z = −DW − ΛDJ, (2.15)

(D2 − k2)J = −DZ, (2.16)

E(D2 − k2)Θ = SW, (2.17)

where D denotes d/dz. The horizontal velocity components can be recovered from
Z = ikV and DW = −ikU . No-slip insulating boundary conditions W = DW =
Z = J =0 apply at z = 0, together with decay as z → −∞. The flow is driven by
the thermal boundary condition Θ(0) = 1.

Solution of this differential system is, of course, mathematically straightforward. In
the geophysically relevant limit E → 0, the equations become singular and boundary
layers can be expected. The point of physical interest is that the magnetic field causes
a major change to the structure of the flow, in particular reducing the magnitude of
the thermal wind from O(1) to O(E1/4). This change in structure is the focus of the
following sections.

3. Non-magnetic flow
We begin by considering (2.14)–(2.17) with Λ = 0, where J and (2.16) can be ignored

and the order of the system reduces to eight. The solution can be deduced using the
method of Barcilon & Pedlosky (1967a), though we present an alternative method
here for better comparison with § 4. Note first that the equations can be combined to
give

(D2 − k2)[E2(D2 − k2)3 + D2 − Sk2]W = 0. (3.1)

It follows that for E � 1 there is a boundary layer with the Ekman scaling z ∼ E1/2

outside of which the solution is a linear combination of exp(kz) and exp(Kz), where
K = S1/2k.

3.1. Ekman boundary layer

With scalings D ∼ E−1/2, W ∼ E, Z ∼ E1/2, Θ ∼ 1, the leading-order equations are

ED4W = DZ + k2Θ, (3.2)

ED2Z = −DW, (3.3)

ED2Θ = 0. (3.4)



Thermal winds forced by inhomogeneous boundary conditions 167

The general solution with no exponential growth is



W/E

Z/E1/2

Θ


 =

c+

m+




−i
m+

0


 e(1+ i)ζ +

c−

m−




i
m−

0


 e(1−i)ζ

+




W0 + k2Θ1ζ

Z0 − 21/2k2
(
Θ0ζ + 1

2
Θ1ζ

2
)

Θ0 + Θ1ζ


 (3.5)

where 21/2m± = 1 ± i and ζ = z/(2E)1/2. In order to match Θ outwards to a more
slowly varying solution, Θ1 must be O(E1/2). By use of the boundary conditions
Z = W =DW =0 and Θ =1 at z =0, we get

Θ0 = 1, c+ = c− = −Z0

2
, W0 = −21/2Z0. (3.6)

Hence, 


W/E

Z/E1/2

Θ


 =




−21/2Z0(1 − cos ζeζ + sin ζeζ )
Z0(1 − cos ζeζ ) − 21/2k2ζ

1


 . (3.7)

This solution is the superposition of a weak Ekman layer and the edge of a thermal
wind. The weakness of the Ekman layer (by a factor E1/2) anticipates the matching
to the thermal wind in the bulk flow.

3.2. Geostrophic thermal wind

Outside the boundary layer, the scaling D ∼ 1 suggests W ∼ E, Z ∼ 1 and Θ ∼ 1, so
that the leading-order equations are

0 = DZ + k2Θ, (3.8)

E(D2 − k2)Z = −DW, (3.9)

E(D2 − k2)Θ = SW. (3.10)

The scaling of W precludes a stronger Ekman layer. The general solution with decay
as z → −∞ is 


W/E

Z

Θ


 = c1




0
k

−1


 ekz + c2




K2 − k2

−K

S


 eKz. (3.11)

Matching Z inwards at O(1) to (3.7) gives c1 = S1/2c2, while matching Θ shows that
c1 = 1/(S1/2 − 1). (The case S = 1 is degenerate but not singular.) These values of c1

and c2 also give the correct matching DZ ∼ −k2 and give W0 = k2(S − 1)/(S − S1/2).
This solution shows some similarity with the analysis (Barcilon & Pedlosky 1967a)

of stratified rotating flow with S � E1/2 driven mechanically by a super-rotating
boundary. Both solutions show that the interior flow is a geostrophic thermal
wind formed by a superposition of a baroclinic and barotropic component. The
thermal perturbation extends to an O(1) depth by diffusion and Ekman pumping
is suppressed from O(E1/2) to O(E) by a linear decrease of the strength of the
geostrophic circulation to zero at the boundary. On the other hand, Barcilon &
Pedlosky (1967b) found that the flow structure changes for S � E1/2 as the thermal
perturbation becomes controlled instead by Ekman pumping. It is interesting to note
that this transition is determined by the boundary conditions and is not obvious from
the scales inherent in the differential operator. By contrast, no such transition occurs



168 J. R. Lister

at S = O(E1/2) in the thermally forced flow, and the solution given above holds down
to S = O(E2) at which stage the viscous term needs to be reintroduced in (3.8) since
W ∼ E/S1/2 has become O(1). This transition is inherent in the differential operator
(see § 6), as is a different transition that occurs in both the thermally and mechanically
forced flows at very strong stratifications; when S � E−1 the O(S−1/2) depth of the
baroclinic flow merges with the O(E1/2) Ekman layer to form a single O[(E2/S)1/6]
structure.

4. Hydromagnetic flow
Equations (2.14)–(2.17) can be written LW = 0, where L is the tenth-order operator

(Chandrasekhar 1981, p. 200)

L = (D2 − k2)M2 + (D2 − k2)2D2 − (Sk2/E)M and M = E(D2 − k2)2 − ΛD2.

This operator has three distinguished scalings, D ∼ E−1/2, D ∼ E−1/4 and D ∼ E1/2,
corresponding to

L ∼ D6[(ED2 − Λ)2 + 1],

L ∼ D2[D4(Λ2 + 1) + Sk2Λ/E],

L ∼ −(Sk2/E)(Ek4 − ΛD2),

respectively. The hydromagnetic problem thus requires matching across a three-
layered structure, as described below.

4.1. Ekman–Hartmann boundary layer

With scalings D ∼ E−1/2, W ∼ E3/4, Z ∼ E1/4, J ∼ E3/4, Θ ∼ 1, (2.14)–(2.17) become

ED4W = DZ + ΛD2W, (4.1)

ED2Z = −DW − ΛDJ, (4.2)

D2J = −DZ, (4.3)

ED2Θ = 0. (4.4)

The relative scalings of W , Z and J are forced by the balances in (4.1)–(4.3), but the
absolute values are a factor E1/4 weaker than the usual Ekman–Hartmann scalings
(Gilman & Benton 1968; Benton & Loper 1969), anticipating the matching to the
thermal wind in § 4.2.

The general solution of (4.1)–(4.4) with no exponential growth is



W/E3/4

Z/E1/4

J/E3/4

Θ


 =

c+

m+




−i
m+

−1
0


 e(β + iγ )ζ +

c−

m−




+ i
m−
−1
0


 e(β−iγ )ζ +




W0 − ΛJ1ζ

Z0

J0 + J1ζ

Θ0 + Θ1ζ


 (4.5)

where

β2 = (Λ2 + 1)1/2 +Λ, γ 2 = (Λ2 + 1)1/2 − Λ, (4.6)

21/2m± = β ± iγ and ζ = z/(2E)1/2. In order to match outwards to a more slowly
varying thermal-wind layer, both J1 and Θ1 must be O(E1/4). By use of the boundary
conditions at z = 0, we obtain

Θ0 = 1, c+ = c− = −Z0

2
, J0 = −21/2βZ0

β2 + γ 2
, W0 = −21/2γZ0

β2 + γ 2
. (4.7)
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Hence, 


W/E3/4

Z/E1/4

J/E3/4

Θ


 =




W0[1 − cos(γ ζ )eβζ +(β/γ ) sin(γ ζ )eβζ ]
Z0[1 − cos(γ ζ )eβζ ]

J0[1 − cos(γ ζ )eβζ − (γ /β) sin(γ ζ )eβζ ]
1


 (4.8)

where J0 and W0 are given by the usual Ekman–Hartmann compatibility conditions
(4.7c, d) in terms of Z0.

4.2. Magnetostrophic thermal wind

Outside the boundary layer, the scaling D ∼ E−1/4 suggests W ∼ E1/2, Z ∼ E1/4,
J ∼ E1/2 and Θ ∼ 1, so that the leading-order equations become

0 = DZ + ΛD2W + k2Θ, (4.9)

0 = −DW − ΛDJ, (4.10)

D2J = −DZ, (4.11)

ED2Θ = SW, (4.12)

with corrections of relative size O(E1/2). The scaling of W precludes a stronger
Ekman–Hartmann layer.

The general non-growing solution is




W/E1/2

Z/E1/4

J/E1/2

Θ


 = d+




Λk2

(1 + i)δk2

−k2

−2iδ2(1 + Λ2)


 e(1 + i)ζ̃ + d−




Λk2

(1 − i)δk2

−k2

2iδ2(1 + Λ2)


 e(1−i)ζ̃ +




0
Z̃

J̃

0




(4.13)

where δ4 = k2SΛ/4(1 + Λ2) and ζ̃ = δz/E1/4. Matching W inwards at O(E1/2) to (4.8)
shows that d+ + d− = O(E1/4). Thus




W/E1/2

Z/E1/4

J/E1/2

Θ


 = ∆




Λk2 sin ζ̃

δk2(sin ζ̃ + cos ζ̃ )
−k2 sin ζ̃

−2δ2(1 + Λ2) cos ζ̃


 eζ̃ + Σ




Λk2 cos ζ̃

δk2(cos ζ̃ − sin ζ̃ )
−k2 cos ζ̃

2δ2(1 + Λ2) sin ζ̃


 eζ̃ +




0
Z̃

J̃

0




(4.14)

where Σ =O(E1/4). Matching Θ and Z inwards to (4.8) gives

∆ = −[k2SΛ(1 + Λ2)]−1/2, Z̃ = Z0 − ∆δk2. (4.15)

Matching W and J inwards at O(E3/4) gives

Σ =
E1/4W0

Λk2
, J̃ = E1/4(J0 +W0Λ

−1). (4.16)

That J̃ = O(E1/4) will prove to be consistent with the scale of J in the outer layer.

4.3. Outer diffusive layer – remnant disturbance

The scaling D ∼ E1/2 suggests W ∼ E7/4, Z ∼ E1/4, J ∼ E3/4 and Θ ∼ E3/4, so that
the leading-order equations become

0 = DZ + k2Θ, (4.17)

−Ek2Z = −ΛDJ, (4.18)
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Figure 1. The functions f0(Λ) = −B/(1 +A) and f∞(Λ) =AB/(1 +A), defined by (4.24) and
(4.25), describe the strength of the thermal wind for the boundary conditions of § 4. For the
free-slip boundary conditions of § 5.1 they are replaced by f∞ = 0 and f0 = −B; with a rigid
bottom in § 5.2 they are replaced by f∞ = B/2 and f0 = −B/2.

−k2J = −DZ, (4.19)

−Ek2Θ = SW. (4.20)

The general decaying solution is




W/E7/4

Z/E1/4

J/E3/4

Θ/E3/4


 =

Z∞

Λ1/2




k2/S

Λ1/2

1
−1


 exp

[
(E/Λ)1/2k2z)

]
. (4.21)

Matching Z and J inwards to (4.14) shows that Z̃ = Z∞ and J̃ =Z∞E1/4/Λ1/2.
Comparison with (4.16b) and (4.15b) gives

Z∞ = J0Λ
1/2 + W0Λ

−1/2 = −A(Λ)Z0, (4.22)

Z∞ = Z0 + B(Λ)k3/2S−1/4, (4.23)

where

A(Λ) =
βΛ1/2 + γΛ−1/2

[2(1 + Λ2)]1/2
, B(Λ) =

1

[4Λ(1 + Λ2)3]1/4
, (4.24)

and β and γ are given by (4.6). Thus

Z0 = k3/2S−1/4f0(Λ), Z∞ = k3/2S−1/4f∞(Λ), (4.25)

where f0(Λ) = −B/(1 + A) and f∞(Λ) = AB/(1 + A). These functions are shown in
figure 1.
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The structure of the forced thermal wind in the presence of magnetic field is
thus very different from the non-magnetic flow of § 3. Only the inner E1/2 viscous
boundary layer is similar, with the magnetic field simply producing a modification
from Ekman to Ekman–Hartmann structure. However, the thermal wind is confined
by magnetic effects to a thin layer of thickness E1/4 and the amplitude of the thermal
wind is correspondingly reduced from O(1) to O(E1/4) for unit thermal forcing. This
reduction is an important effect when making predictions of flow in the Earth’s core.
In hydromagnetic flow, coupling between the vertical current and vorticity also allows
the thermal wind to drive columnar motion to a large depth O(E−1/2).

5. Other boundary conditions
We have found the hydromagnetic flow driven by lateral variation in thermal

boundary conditions for the simplest case of a half-space overlain by a rigid insulating
boundary. Here we sketch a few ways that the solution can be adapted to other
boundary conditions.

5.1. A free-slip top boundary

Suppose we now change the top boundary conditions to W =D2W = DZ = J =0
corresponding to impenetrable, free-slip, insulating conditions. The solution for the
thermal wind is still (4.14)–(4.16). Because the Ekman–Hartmann layer now only has
to adapt to free-slip conditions, it is a factor E1/4 weaker, and hence J0 and W0

are O(E1/4), and J̃ and Σ are O(E1/2). By matching outwards, Z̃ = Z∞ is O(E1/4)
and hence Z0 = ∆δk2 or f0 = −B . In this case, the leading-order thermal wind in the
middle layer is just the term with coefficient ∆ in (4.14) and can be found directly
from the thermal forcing. The inner and outer solutions are higher-order effects.

5.2. A rigid insulating bottom boundary

Suppose instead we change the boundary conditions from decay as z → −∞ to
W = DW = Z = J = Θ = 0 at z = −H corresponding to a rigid, electrically insulating,
isothermal lower boundary. Provided H � E−1/2, the leading-order behaviour outside
the E1/2 and E1/4 boundary layers is given by DZ =DJ = 0 instead of (4.18) and
(4.19). Thus Z = E1/4Z∞ and J = E3/4J∞, where Z∞ and J∞ must both be found by
matching.

Near z = −H there is an Ekman–Hartmann layer given by (Gilman & Benton
1968; Benton & Loper 1969)




W/E3/4

Z/E1/4

J/E3/4

Θ


 =




W1[1 − cos(γ η)e−βη − (β/γ ) sin(γ η)e−βη]
Z1[1 − cos(γ η)e−βη]

J1[1 − cos(γ η)e−βη + (γ /β) sin(γ η)e−βη]
0


 (5.1)

where η = (z + H )/(2E)1/2 and

J1 =
21/2βZ1

β2 + γ 2
, W1 =

21/2γZ1

β2 + γ 2
. (5.2)

The Ekman–Hartmann layer is nested within an E1/4 layer analogous to (4.14), with
constants ∆1, Σ1, Z̃1 and J̃ 1. In this case matching Θ and Z to (5.1) gives ∆1 = 0 and
Z̃1 = Z1, so that there is no thermal wind at the bottom boundary at leading order.
Matching W and J to (5.1) gives J̃ 1 = E1/4(J1 + W1Λ

−1), showing that the E1/4 layer
is non-trivial even though there is no leading-order thermal wind. Finally, matching
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the E1/4 layer to the bulk solution gives J̃ 1 = E1/4J∞ and Z̃1 = Z∞. Thus (4.23) is
replaced by Z∞ = −Z0 and combination with (4.23) gives f∞ = B/2 and f0 = −B/2
(figure 1).

While the change to the boundary conditions, both here and in § 5.1, affects the
numerical values of the various constants, it does not affect the scalings of the thermal
wind with E, k and S.

5.3. Heat-flux variations

The solution for the boundary condition DΘ =1, corresponding to imposed heat
flux variations rather than imposed temperature variations, can simply be obtained
by rescaling the solutions given above. For non-magnetic flow we rescale (3.11) by
(S1/2 −1)/(S −1), whereas for hydromagnetic flow we rescale (4.14) by E1/4/δ reducing
the strength of the thermal wind further to O(E1/2kS−1/2).

6. General exploration of the scales in linear flows
In § 4 we constructed the flow by noting that the tenth-order operator L has three

distinguished scalings for the vertical derivative D as E → 0, with Λ and S both
O(1). The dependence of the depth of the magnetostrophic thermal wind (4.14) on
both Λ and S raises the question of whether the solution structure changes as these
parameters become asymptotically large or small. More generally, one can ask what
vertical and horizontal scales can be supported by the differential system (2.9)–(2.12)
as E → 0 for different scalings of the parameters C, Λ and S with E. (In this section
we reintroduce C as an independent parameter to allow consideration of non-rotating
flow as the limit C → 0.) This question was partly answered by Loper (1976a) who,
while considering mechanically driven stratified hydromagnetic flow in a rotating
cylinder, identified the possible horizontal and vertical boundary-layer scalings that
might arise in such a flow i.e. the scales that are much shorter than the scale of the
boundary forcing. Here we also consider scales much longer than the scale of the
forcing, such as the columnar motions of § 4.3, the Taylor column associated with
motion of a small body through a large volume of fluid, or the phenomenon of
blocking in stratified flow.

The method followed is the same as that of Loper (1976a), namely to look for
self-consistent asymptotic balances between two of the terms labelled [a]–[e] in the
operator

L ≡ E∇2(E∇4 − ΛD2)2 + EC2∇4D2 − S(∇2 − D2)(E∇4 − ΛD2) = 0 (6.1)

[a] [b] [c] [d] [e]

that results from (2.9)–(2.12). As in the previous sections, we look for solutions
proportional to exp(ikx + mz), where x is a horizontal coordinate, from which the
general solution can be obtained by Fourier superposition (k and m are not necessarily
real). The operators ∇2 and D2 produce m2−k2 and m2 respectively, and the asymptotic
roots m(k) and k(m) resulting from different balances in (6.1) are given in table 1, with
the regions of validity for these balances summarized in figures 2–4. Table 1 extends
tables 2 and 3 of Loper (1976a) by giving the long scales as well as the short and
by including the O(1) numerical coefficients. Figures 2–4 are consistent with figures
1 and 2 of Loper (1976a), but are drawn to show the ten roots m(k) and k(m) for all
parameter values.

It should be noted that, by virtue of independence of the arbitrary scales L and
T used in the non-dimensionalization, the results only depend on the parameter
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Label Balance m2(k) k2(m)

A1 a, c ±iC/E —
A2a a, b Λ/E twice —
A2b d, e Λ/E once —
A4 a, d (Sk2/E2)1/3 E2m6/S

A5 c, d Sk2/C2 C2m2/S

A6 b, e (−Sk2/EΛ)1/2 −EΛm4/S

A7 c, e (−SΛk2/EC2)1/2 −EC2m4/SΛ

B1 a, c −E2k6/C2 (C2m2/E2)1/3

B2a a, b Ek4/Λ twice (Λm2/E)1/2 twice
B2b d, e Ek4/Λ once (Λm2/E)1/2 once
B3 b, c C2k2/Λ2 Λ2m2/C2

B4 a, d — (S/E2)1/2

B5 c, d Sk2/C2 C2m2/S
B6 b, e −S/EΛ —
B7 c, e — SΛ/EC2

C1 d k2 twice m2 twice
C2 c k2 twice m2 twice
C3 b k2 once m2 once
C4 a k2 (5 times) m2 (5 times)

Table 1. The dimensionless inverse vertical and horizontal scales m and k resulting from
different balances in (6.1) for modes proportional to exp(ikx + mz). The labels are based on
Loper (1976a) with An used for |k| � |m|, Bn used for |m| � |k| and Cn used for |m| ∼ |k|.
Fractional powers include all the complex roots, and some solutions have the multiplicity
shown. The regions of validity are shown in figures 2 and 3.

Figure 2. Regions of validity for the roots m(k) in table 1 for S � E2
∗ , where E∗ = Ek2. The

subscripts on the roots show multiplicity, and there are 10 roots in all regions. The analyses
of § 3 and § 4 lie at the points marked � and �.
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Figure 3. Regions of validity for the roots k(m) in table 1 for S � E2
∗ , where E∗ = Em2.

Figure 4. Regions of validity for S � E2
∗ : (a) m(k); (b) k(m).

combinations C/E∗, Λ/E∗ and S/E2
∗ , where E∗ =Ek2 or Em2 is the Ekman number

based on the lengthscale L/k or L/m, respectively. Depending on the problem, it may
be sensible to choose T so that one of C, Λ or S is set equal to 1.

Within this larger context, it can be seen that the non-magnetic thermal wind of § 3
with C = 1 and S = O(1) is constructed from m-roots A1, A5/B5 and C1/C2, while the
hydromagnetic thermal wind of § 4 and § 5 with C = 1 and S, Λ =O(1) is constructed
from A1/A2a, A6/A7 and B2b (figure 2). (Here X/Y denotes the asymptotic overlap
between two regimes X and Y .) As mentioned previously, the non-magnetic thermal
wind changes scalings at S =O(E−1

∗ ) when the baroclinic flow A5 and Ekman layer
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A1 merge to form a stratified Ekman layer A4, and at S = O(E2
∗) when the baroclinic

flow B5 acquires the viscous columnar structure B1. The hydromagnetic thermal
wind can change scalings in a variety of ways if S and Λ cease to be O(1), at
Λ = O(S/E∗), Λ = O(SE

1/3
∗ ), Λ = O(E∗/S) or Λ= O(E∗S). In the mechanically forced

non-magnetic flow in a cylinder analysed by Barcilon & Pedlosky (1967b), the merging
at S = O(E2/3) of the hydrostatic and buoyancy sidewall boundary layers, given by
k-roots B4 and B5, to form a Stewartson E1/3 layer, given by B1, can also be identified
in figure 3.

Not all spatial scalings are inherent in the differential operator L of (6.1) and can
thus be found in table 1 and figures 2–4. For example, the Stewartson E1/4 vertical
shear layer acquires its scaling in part from the requirement that it accommodate the
E1/2 flux from Ekman pumping. In a spherical annulus the Stewartson-layer scaling
is E2/7 (Stewartson 1966) within the tangent cylinder because the Ekman flux is E3/7,
owing to the inclination of the inner-sphere boundary. The scale of the flux is not
built into L and thus these Stewartson scalings are not found in table 1. Moreover,
the change in the scaling of W at S = O(E1/2) found by Barcilon & Pedlosky (1967b)
for mechanically forced non-magnetic flow in a cylinder (and similar changes found
by Loper (1976a) for the hydromagnetic analogue) is not associated with a change
in the vertical structure, but simply in the magnitude of the flow in each layer.
Such changes are a function of the boundary conditions and not inherent in L. For
example, while the scaling of W changes at S = O(E1/2

∗ ) in a mechanically forced
finite-depth container, it changes at S = O(E∗) in a mechanically forced half-space
and is unchanged down to the B5–B1 transition at S = O(E2

∗) in a thermally forced
half-space. While such changes of scale need to be considered on a case-by-case basis,
the scales in table 1 are a general property of the differential operator L.

It is straightforward to generalize the analysis to consider the case where B0 and
Ω are no longer parallel to ez; the result is simply to amend L in (6.1) by replacing

ΛD2 by Λ(B̂0 · ∇)2 and C2D2 by C2(Ω̂0 · ∇)2, where B̂0 and Ω̂ are unit vectors in the
directions of B0 and Ω . Without going into detail, we can say that generically the
‘long horizontal’ scales A4, A5, A6 and A7 in table 1 remain horizontal, the ‘long
vertical’ scales B1 and B5 become elongated in the Ω-direction, the ‘long vertical’
scales B2, B3 and B6 become elongated in the B0-directions, and some of the ‘short
horizontal’ and ‘vertical’ scales similarly become oriented by Ω or B0 instead of ez.

New scalings can arise for linear modes in which B̂0 · ∇, Ω̂0 · ∇ or êz · ∇ is almost zero,
particularly in the degenerate cases B0 · ez = 0, Ω · ez = 0 and Ω · B0 = 0.

The results of the present analysis cannot easily be compared with those of
Shimizu & Loper (1997) who considered the case S = 0 with Ω perpendicular to B0.
When S = 0 with Ω parallel to B0 the possible scales are limited to those in figure 4
(i.e. those in table 1 that are independent of S). These scales are also found among the
wake modes and boundary-layer scalings of Shimizu & Loper (1997), together with
scalings arising from Ω · B0 = 0. Clearly, the addition of stratification allows more
possibilities.

7. Discussion
We have shown that the presence of a magnetic field has a major effect on the

strength and structure of the thermal wind generated by lateral variations in the
thermal boundary conditions of a stably stratified electrically conducting fluid. While
this accords with a general tendency for magnetic fields to resist deformation by flow, it
is worth exploring the mechanism that gives rise to the thermal wind with E1/4 scaling.
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D

D1/D

1/D

k/D

Figure 5. The coupling between the variables in the hydromagnetic thermal wind through
the vorticity equation (solid arrows), induction equation (dashed), heat equation (bold) and
µm j = ∇ ∧ b (dotted). The associated factors give rise to the scaling D ∼ [Sk2Λ/E(1 +Λ2)]1/4.

The ODE system (4.9)–(4.12) can be retraced to the approximate dimensionless forms
of the vorticity, induction and heat equations,

−2∂zu = −ikθey + Λ∂z j , (7.1)

∂2
z b = ∂zu, (7.2)

E∂2
z θ = Sw, (7.3)

where the current j is approximated by

j = (−∂zby, ∂zbx, ikby) (7.4)

since ∂zbx � ∂xbz. (Note that the horizontal components of u, b and j are each a
factor E−1/4 larger than the corresponding vertical components.) Equation (7.1) states
that, with negligible viscosity, distortion of the background vorticity (Ω · ∇)u balances
the gravitational and Lorentz torques. Equation (7.2) balances vertical diffusion of
the perturbation field with distortion of background field (B0 · ∇)u.

The coupled system of variables is shown schematically in figure 5. For Λ � 1
the lower loop is dominant: horizontal temperature gradients drive a geostrophic
thermal wind v; the induced field by provides a vertical torque proportional to Λjz;
the resultant upwelling w confines the thermal wind to an O[(E/Sk2Λ)1/4] distance
from the boundary. In this regime v = O[(Ek2/ΛS)1/4] for θ ∼ 1 and u ∼ Λv � v. For
Λ � 1 both loops are important: the induced field by not only provides upwelling
as before, but also provides a horizontal torque proportional to Λjx that drives a
strong flow u ( � v); further feedback via the induction equation generates a strong
field bx and stronger torque Λjy; the net effect is that the gravitational torque is
almost perfectly counterbalanced by the y-component of the Lorentz torque so that
v = O[(Ek2/S)1/4Λ−7/4] and not the O[(Ek2Λ/S)1/4] that might be expected in an
O[(EΛ/Sk2)1/4] thick thermal wind. It should be noted that none of this coupling
relies upon the Ekman pumping or Hartmann current from the Ekman–Hartmann
layer; these turn out to be sufficiently strong to affect the O(1) prefactors of the
thermal wind, but not its scaling.

For the Earth’s core the main issue is not the scaling with Λ, but the scaling with
E. With a typical lengthscale L =1000 km, an f -plane approximation f = 10−4 s−1

to 2Ω sin θ and a molecular value ν = 10−6 m2 s−1 for the kinematic viscosity of the
outer core, we obtain E = 10−14. It is sometimes suggested that an eddy viscosity
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ν = 1 m2 s−1 might be more appropriate for turbulent motion in the core, leading to
E = 10−8. In either case, the E1/4 scaling is clearly a significant factor in the estimated
size of thermal winds driven by a given spatial variation of the heat flux across the
core–mantle boundary. For example, a uniform rate of cooling 20% less than the
rate of conduction up the core adiabat would lead to a stratified layer in the outer
core about 200 km thick with S = 0.5 (Lister & Buffett 1998). The r.m.s. radial field
of 0.5 mT with ρ = 104 kg m−3 and η = 2 m2 s−1 (Stacey 1992) corresponds to Λ =0.1.
If the magnetic effects are neglected then a mere 5% lateral variation in heat flux
would drive a geostrophic thermal wind of magnitude 1 m s−1 through the 200 km
depth of the stratified layer, which is clearly inconsistent with observed velocities of
order 0.3 mm s−1. However, if the magnetic effects are included then, with E = 10−14

(E = 10−8), the thermal wind would be confined to a layer of thickness of order
1 km (35 km) and have a greatly reduced magnitude of order 0.01 mm s−1 (7 mm s−1).
While there is considerable uncertainty in this calculation about the effective viscosity
due to turbulence, it is clear that the magnetic field has a major effect and that
the predicted magnitudes of hydromagnetic flow are much easier to reconcile with
observations than those of geostrophic flow. Somewhat fortunately, since Λ is small,
the direction of hydromagnetic flow for a given pattern of thermal forcing is almost
the same as that of the corresponding geostrophic flow, and so previous comments
on the similarity between inferred mantle temperatures and core flow patterns (e.g.
Bloxham & Gubbins 1987; Kohler & Stevenson 1990; Bloxham & Jackson 1990)
may still be significant. Further work will be required to incorporate the variations
of f with latitude and B0 with position into the theory.

I am very grateful to the Research School of Earth Sciences (ANU, Canberra)
and the Institut de Physique du Globe (Paris) for hospitality and support in visiting
positions during the writing of this manuscript.
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